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Current Steering DACs



Current Steering DACs 
Reduced Resistance Structure
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Is the R-2R structure smaller ?

Does the R-2R structure perform better?

What metric should be used for comparing performance?

Review from Last Lecture



Performance of Thermometer Coded vs Binary Coded DACs

• Thermometer-coded structures have 

inherently small DNL

• Binary coded structures can have large DNL

• INL of both structures is comparable for same 

total area (provided area appropriately allocated)

Conventional Wisdom:

Review from Last Lecture



Comparison of Thermometer Coded and 

Binary Coded DACs
AR=0.02µm

RN=1KExample:  n=10 Resistor Sigma= 14.14 Ω

Low DNL and random walk nature should be apparent

String DAC

Review from Last Lecture



Comparison of Thermometer Coded and 

Binary Coded DACs
AR=0.02µm

RN=1KExample:  n=10 Resistor Sigma= 14.14 Ω

Histogram of INLkmax from 100,000 runs

Appears to be  Gaussian

INLkmax_mean = -2.11116e-05      

INLkmax_sigma =  0.226783

String DAC

Review from Last Lecture



Comparison of Thermometer Coded and 

Binary Coded DACs
AR=0.02µm

RN=1KExample:  n=10 Resistor Sigma= 14.14 Ω

Histogram of INL from 100,000 runs

Not  Gaussian

INLmean = 0.384382    

INLsigma =  0.117732  

String DAC

Review from Last Lecture



Comparison of Thermometer Coded and 

Binary Coded DACs

AR=0.02µm

RN=1K

Example:  n=10 Resistor Sigma= 14.14 Ω

Binary DAC

Large DNL bit INL does not appear to be much different than for string DAC

Review from Last Lecture



Comparison of Thermometer Coded and 

Binary Coded DACs
AR=0.02µm

RN=1KExample:  n=10
Resistor Sigma= 14.14 Ω

Binary DACString DAC

Both structures have essentially the same area

Since mathematical form for PDF is not available, not easy to analytically calculate yield

Histogram of INL from 100,000 runs

Review from Last Lecture



Comparison of Thermometer Coded and 

Binary Coded DACs
AR=0.02µm

RN=1KExample:  n=10
Resistor Sigma= 14.14 Ω

Binary DAC

String DAC

Both structures have essentially the same area

Review from Last Lecture



Current Steering DACs 

Segmented  Resistor Arrays
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• Combines two types of architectures

• Can inherit advantages of both thermometer and binary approach

• Minimizes limitations of both thermometer and binary approach

Review from Last Lecture



Current Steering DACs 
Reduced Resistance Structure

Is it better to use series unary cells to form 

R or parallel unary cells to form       ?  
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Review from Last Lecture



Comparison of  INLkmax and INL for String DACs

AR=0.02µm

RN=1KExample:  n=10 Resistor Sigma= 14.14 Ω

Histogram of INL from 100,000 runs

String (Unary)

INLmean = 0.384382      

INLsigma =  0.117732 
INLkmax_mean = -.00526008          

INLkmax_sigma =  0.23196 

File: BinaryWeightedDACInl.m

String (Unary)

• Closed-Form Analytical Formulation Available • No Closed-Form Analytical Formulation

Not  Gaussian
Gaussian



Comparison of INL and INLkmax
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These plots may be useful for providing insight into performance

artist drawing artist drawing

Histogram of INLkmax

Results similar for both String and Binary Structures



Monte Carlo Simulation Time can Become Large

AR=0.02µm

RN=1KExample:  n=10 Resistor Sigma= 14.14 Ω

Histogram of INL from 100,000 runs

File: BinaryWeightedDACInl.m

Binary DAC
Binary DAC

Histogram of INL from 1000 runs

Can require a large number of runs for useful information

This should provide insight into length of Monte Carlo simulations needed to get useful results



The R-2R Ladder



R-2R  Resistor Arrays

• Depicting relative resistor values (not how unary cells used)

• Conceptually, area goes up linearly with number of bit slices

• Can be used in many different ways
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Array 

Termination

Slice 1 Slice 2 Slice n



R-2R DAC
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Various Implementations of the R-2R Structure

Current-Steering R-2R

Voltage Division R-2R



R-2R DAC
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(4-bits shown)

• Total resistance goes up linearly with number of bit slices !!

• Conventional wisdom:  area goes up linearly with number of bit slices

• Does conventional wisdom result in optimal designs?

Bit 

Slice

• No op amp required !!

• 2:1 Ratio matching of MSB slice most critical

Voltage-Division Structure



R-2R DAC
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Limitations:

(4-bits shown)

• Switch impedances imbalance 2R cells

• Output impedance not 0

Bit 

Slice

• Parasitic capacitances on all nodes must settle during all transitions

Is the output impedance code dependent?

• Analogous to top-plate switching

Voltage-Division Structure



R-2R DAC
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Limitations:

(4-bits shown)

• Switch impedances imbalance 2R cells

• Output impedance not 0

Bit 

Slice

• Parasitic capacitances on all nodes must settle during all transitions

Is the output impedance code dependent?

• Analogous to top-plate switching

No!   Impedance facing Vout is always R



R-2R DAC
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R-2R Implementation 

• Add resistor equal to nominal switch impedance in each unswitched cell

• Impedance equal to the nominal switch impedance

• Offers some improvement, particularly if all switches are bottom-plate switches

(but for previous R-2R structure do not have all bottom-plate switches)
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• Will not track with temperature and process variations



R-2R Implementation 
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• Unit cell widely used

• Switch included in cell even if not switched!

• Code dependence of switch impedance of concern (this can be addressed)

• Delays associated with turning on switches also of concern since some 

cells not referenced to same level as switches
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• INL can get large in R-2R structures

• DNL can get large in R-2R structures 



R R R

θ R

k-slice sub-radix array

Array 

Termination

Slice 1 Slice 2 Slice k

θ R θ R z R

Sub-radix Array 

Typically    2.1< θ < 2.5 

Termination resistor must be selected so that same attenuation is maintained

Often only the first n1 MSB “slices”   will be sub-radix

Effective number of bits when using sub-radix array will be less than k

Can be calibrated to obtain very low DNL (and maybe INL) with small area

Want Currents to Scale by 1/θ (instead of ½) from each slice to the next



It can be shown that the optimal value of z is given by the expression

( )3 1 1 1 4
z

1 1 4 2

 + − +  + 
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− + +  − 

This derivation is in a file named Termination of Subradix.docx

Derivation based upon assuming the three impedances R1 below must 

be the same
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Sub-radix Array 
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Output of an optimally terminated subradix DAC of 5 bits with θ=2.5 

and z=1.15831

See file SubRadix DAC.xslx

θ selected so probability of large positive gap is very small



3-slice sub-radix DAC 
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3-slice sub-radix array

Typically θ is slightly greater than 2

Does not eliminate large DNL errors but can eliminate gaps in output



R-2R  Resistor Arrays
R
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2R Area twice R Area R Area twice 2R Area

Does it make any difference how area is allocated?
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2R Area twice R Area R Area twice 2R Area

Area Allocation for R and 2R Resistors

Series Layout Parallel Layout

Assume area in each slice if fixed

RF

VOUT

RF
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Switches not shown Switches not shown



2R Area twice R Area R Area twice 2R Area

Area Allocation for R and 2R Resistors

Series Layout Parallel Layout

Assume area in each slice if fixed

RF

VOUT

RF

VOUT

Switches not shown Switches not shown

critical MSB current



Area Allocation for R and 2R Resistors

Yield is affected by both mean and standard deviation of the non-Gaussian  pdf

Standard deviation of parallel layout is somewhat more (but uses less cells for n small)

Area allocation between slices also affects yield

• Number of cells (and hence total area) is 

not constant in these simulations

• Difference in total area not significant  for 

large n but difference in σINL is  



Challenges with all R-based DACs

• Switch Impedance

• Contact Resistance

• Variability
Resistor

Contact Resistance

Switch Impedance

• Parasitic Capacitances



Another R-2R DAC 
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Current flow will change power dissipation based upon digital code

Eliminates series switch resistance when switching resistors 

Series resistance in  current source does not affect current

Must match both resistors and current sources

Current flow will pull capacitance on switch nodes to low before current 

sources leave saturation



Another R-2R DAC 
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Switch will pull capacitance on switch nodes to GND instead of VSS

Power dissipation will not be code dependent



Stay Safe and Stay Healthy !



End of Lecture 16



Current Steering DAC
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Current Steering Binary DAC
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• eliminates decoder

• DNL not good for large n

• area ratio from MSB source to LSB source too large for large n (can make I only so 

small)



Current Steering Binary DAC

• reduces total current spread of bit cells

• reduces total number of bit cells (since cells are bundled)

• can repeat mirror current attenuator

• can change number of bits in each current attenuator stage

• Scale currents down in LSB portion  rather than scale current up in MSB portion
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How is performance affected by reducing the number of unary cells?

Is too much area allocated to the LSB cells?



Current Steering Binary DAC
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• LSB performance not critical

• Limit number of binary attenuators to avoid accumulating too much error



Sub-Radix Current Steering DAC
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Takes smaller steps so takes more steps to cover range

Typically   1.9<θ<1.99 (Depending on ratio-matching accuracy of current sources)



Current Steering DAC
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Segmented Structure Widely Used

• Binary code LSBs to reduce Decoder Complexity

• Thermometer Code MSB to manage DNL

• Partitioning between Thermometer and Binary Coding is critical 



What Cells Are Used for Current Steering DAC

• What characteristics are important in a given process ?

• What cells are used ?
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Matching?

Area (cost) ?

Speed?

Power ?

Linearity ?



Current Steering DAC

I

d1

I

d2

I

dN-1B
in

a
ry

 t
o

 

T
h

e
rm

o
m

e
te

r 

D
e

c
o

d
e

r 
 (

a
ll 

O
N

)

n
VOUT

1

2

RF

VXX

k
#

IOUT

OUT=kI I

I

dk

I

dk

VDD

VXX

Bottom plate switching

Is output impedance of current sources of concern?

No !   Matching is important but linearity is not

Current Source Bit Cells: 



Current Steering DAC
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Parasitic capacitance will charge to VXX before 

current source saturates

Power dissipation is code dependent

Current Source Bit Cells: 



Current Steering DAC
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• Current steering instead of current switching

• Power dissipation in current sources remains 

constant

• Smaller gate voltages can be used to steer current

• Dump current can provide differential DAC output



Current Steering DAC
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• Parasitic capacitances do not charge and discharge

• Current steering provides inherent cascading

• This structure is a double-cascode



Current Steering DAC
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Signal swings only need to be large enough to steer current 



Current Steering DAC Comparison
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Do current-source bit cells also introduce code-dependent β in the 

feedback amplifier and thus code-dependent op amp settling? 
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No!   β=1 for all codes with current-source bit cell.



Current Steering DAC with Supply 

Independent Biasing
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If transistors on top row are all matched, IX=VREF/R
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Thermometer coded structure (requires binary to thermometer decoder)

N 1
REF

A i
i 0

V
I d

R

−

=

 
=  
 

N=2n



Current Steering DAC with Supply 

Independent Biasing

If transistors on top row are all matched, IX=VREF/R

Provides Differential Output Voltages
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Current Current Steering DAC with 

Supply Independent Biasing
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Does this serve as an MDAC?

Will usually use parallel connections of unary transistor 

cells to increase effective W



Current Steering DAC
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Voltage Out Current  Out

• Many current steering DACs have an output current instead of an output voltage

• Output voltage is often established by steering current to a fixed external resistor (50Ω or 100 Ω)

• Most basic current steering architectures with a high output impedance can be used by simply 

removing the op amp

• Whereas output impedance of current sources was not of major concern when driving a null-port, it 

can be of major concern for current output

• Speed may improve and power dissipation may decrease in internal circuitry if output is current


